Fast Ethernet
100BASE-TX
El estándar IEEE para Ethernet en banda base a 100Mb/s sobre dos pares (cada uno de los pares de categoría 5 o superior) de cable UTP o dos pares de cable STP.
100BASE-T4
El estándar IEEE para Ethernet en banda base a 100Mb/s sobre 4 pares de cable UTP de categoría 3 (o superior).
100BASE-FX
Es el estándar IEEE para Ethernet en banda base a 100Mb/s sobre un sistema de cableado de dos fibras ópticas de 62.5/125 μm.
100BASE-T2
El estándar IEEE para Ethernet en banda base a 100Mb/s sobre 2 pares de categoría 3 (o superior) de cable UTP.
UHFGHFDKigkdfpgl
Fast Ethernet.
Fast Ethernet es una extensión del estándar Ethernet actualmente usado en muchas LAN´s alrededor del mundo. Estas redes operan actualmente a una velocidad de 10 Mbps, y el estándar es conocido como IEEE 802.3. Hay diferentes tipos de medio donde se ejecuta 802.3, incluido el par trenzado sin escudo (10BASE-T), coaxial (grueso y delgado) y fibra (10BASE-F).
Como hemos anunciado el estándar Ethernet usa la tecnología conocida como CSMA/CD (carrier sense multiple acces/colision detection). Este es un método bastante caótico de comunicación que algunas veces es referido como "Escuchar antes de transmitir", que significa que cuando una estación de trabajo desea enviar un paquete de datos, esta escucha en la red para ver si esta ocupada, si no lo esta, transmite el paquete. Si exactamente al mismo tiempo otras estaciones transmiten un paquete, se detecta una colisión, y todas las estaciones que están transmitiendo esperan un tiempo aleatorio para intentar retransmitir. En una red extremadamente ocupada, estas colisiones pueden ocurrió muy a menudo, provocando la degradación de la eficiencia de la red.
viernes, 23 de abril de 2010
Objetivos de Ethernet
Los objetivos principales de Ethernet son consistentes con los que se han convertido en los requerimientos básicos para el desarrollo y uso de redes LAN.
Los objetivos originales de Ethernet son:
Simplicidad
• Las características que puedan complicar el diseño de la red sin hacer una contribución substancial para alcanzar otros objetivos se han excluido.
Bajo Costo
• Las mejoras tecnológicas van a continuar reduciendo el costo global de los dispositivos de conexión.
Compatibilidad
• Todas las implementaciones de Ethernet deberán ser capaces de intercambiar datos a nivel de capa de enlace de datos. Para eliminar la posibilidad de variaciones incompatibles de Ethernet, la especificación evita características opcionales.
Direccionamiento flexible
• El mecanismo de direccionamiento debe proveer la capacidad de dirigir datos a un único dispositivo, a un grupo de dispositivos, o alternativamente, difundir (broadcast) el mensaje a todos los dispositivos conectados a la red.
Equidad
• Todos los dispositivos conectados deben tener el mismo acceso a la red.
Progreso
• Ningún dispositivo conectado a la red, operando de acuerdo al protocolo Etheret, debe ser capaz de prevenir la operación de otros dispositivos.
• Alta velocidad
• La red debe operar eficientemente a una tasa de datos de 10 Mb/s.
Bajo retardo
• En cualquier nivel de tráfico de la red, debe presentarse el mínimo tiempo de retardo posible en la transferencia de datos.
Estabilidad
• La red debe ser estable bajo todas las condiciones de carga. Los mensajes entregados deben mantener un porcentaje constante de la totalidad del tráfico de la red.
Mantenimiento
• El diseño de Ethernet debe simplificar el mantenimiento de la red, operaciones y planeamiento.
Arquitectura en capas
• El diseño Ethernet debe ser especificado en término de capas de forma de separar las operaciones lógicas de los protocolos de capa de enlace de las especificaciones de comunicaciones físicas del canal de comunicación.
Ethernet
1BASE-5
El estándar IEEE para Ethernet en banda base a 1Mb/s sobre cable par trenzado a una distancia máxima de 250m.
10BASE-5
Es el estándar IEEE para Ethernet en banda base a 10Mb/s sobre cable coaxial de 50 Ω troncal y AUI (attachment unit interface) de cable par trenzado a una distancia máxima de 500m.
10BASE-2
El estándar IEEE para Ethernet en banda base a 10MB/s sobre cable coaxial delgado de 50 Ω con una distancia máxima de 185m.
10BROAD-36
El estándar IEEE para Ethernet en banda ancha a 10Mb/s sobre cable coaxial de banda ancha de 75 Ω con una distancia máxima de 3600m.
10BASE-T
El estándar IEEE para Ethernet en banda base a 10 Mb/s sobre cable par trenzado sin blindaje (Unshielded Twisted Pair o UTP) siguiendo una topología de cableado horizontal en forma de estrella, con una distancia máxima de 100m desde una estación a un hub.
10BASE-F
El estándar IEEE para Ethernet en banda base a 10Mb/s sobre fibra óptica con una distancia máxima de 2.000 metros (2Km).
Ethernet es un estándar de redes de computadoras de área local con acceso al medio por contienda CSMA/CDes Acceso Múltiple por Detección de Portadora con Detección de Colisiones"), es una técnica usada en redes Ethernet para mejorar sus prestaciones. El nombre viene del concepto físico de ether. Ethernet define las características de cableado y señalización de nivel físico y los formatos de tramas de datos del nivel de enlace de datos del modelo OSI.
La Ethernet se tomó como base para la redacción del estándar internacional IEEE 802.3. Usualmente se toman Ethernet e IEEE 802.3 como sinónimos. Ambas se diferencian en uno de los campos de la trama de datos. Las tramas Ethernet e IEEE 802.3 pueden coexistir en la misma red.
Los objetivos principales de Ethernet son consistentes con los que se han convertido en los requerimientos básicos para el desarrollo y uso de redes LAN.
Los objetivos originales de Ethernet son:
Simplicidad
• Las características que puedan complicar el diseño de la red sin hacer una contribución substancial para alcanzar otros objetivos se han excluido.
Bajo Costo
• Las mejoras tecnológicas van a continuar reduciendo el costo global de los dispositivos de conexión.
Compatibilidad
• Todas las implementaciones de Ethernet deberán ser capaces de intercambiar datos a nivel de capa de enlace de datos. Para eliminar la posibilidad de variaciones incompatibles de Ethernet, la especificación evita características opcionales.
Direccionamiento flexible
• El mecanismo de direccionamiento debe proveer la capacidad de dirigir datos a un único dispositivo, a un grupo de dispositivos, o alternativamente, difundir (broadcast) el mensaje a todos los dispositivos conectados a la red.
Equidad
• Todos los dispositivos conectados deben tener el mismo acceso a la red.
Progreso
• Ningún dispositivo conectado a la red, operando de acuerdo al protocolo Etheret, debe ser capaz de prevenir la operación de otros dispositivos.
• Alta velocidad
• La red debe operar eficientemente a una tasa de datos de 10 Mb/s.
Bajo retardo
• En cualquier nivel de tráfico de la red, debe presentarse el mínimo tiempo de retardo posible en la transferencia de datos.
Estabilidad
• La red debe ser estable bajo todas las condiciones de carga. Los mensajes entregados deben mantener un porcentaje constante de la totalidad del tráfico de la red.
Mantenimiento
• El diseño de Ethernet debe simplificar el mantenimiento de la red, operaciones y planeamiento.
Arquitectura en capas
• El diseño Ethernet debe ser especificado en término de capas de forma de separar las operaciones lógicas de los protocolos de capa de enlace de las especificaciones de comunicaciones físicas del canal de comunicación.
Ethernet
1BASE-5
El estándar IEEE para Ethernet en banda base a 1Mb/s sobre cable par trenzado a una distancia máxima de 250m.
10BASE-5
Es el estándar IEEE para Ethernet en banda base a 10Mb/s sobre cable coaxial de 50 Ω troncal y AUI (attachment unit interface) de cable par trenzado a una distancia máxima de 500m.
10BASE-2
El estándar IEEE para Ethernet en banda base a 10MB/s sobre cable coaxial delgado de 50 Ω con una distancia máxima de 185m.
10BROAD-36
El estándar IEEE para Ethernet en banda ancha a 10Mb/s sobre cable coaxial de banda ancha de 75 Ω con una distancia máxima de 3600m.
10BASE-T
El estándar IEEE para Ethernet en banda base a 10 Mb/s sobre cable par trenzado sin blindaje (Unshielded Twisted Pair o UTP) siguiendo una topología de cableado horizontal en forma de estrella, con una distancia máxima de 100m desde una estación a un hub.
10BASE-F
El estándar IEEE para Ethernet en banda base a 10Mb/s sobre fibra óptica con una distancia máxima de 2.000 metros (2Km).
Ethernet es un estándar de redes de computadoras de área local con acceso al medio por contienda CSMA/CDes Acceso Múltiple por Detección de Portadora con Detección de Colisiones"), es una técnica usada en redes Ethernet para mejorar sus prestaciones. El nombre viene del concepto físico de ether. Ethernet define las características de cableado y señalización de nivel físico y los formatos de tramas de datos del nivel de enlace de datos del modelo OSI.
La Ethernet se tomó como base para la redacción del estándar internacional IEEE 802.3. Usualmente se toman Ethernet e IEEE 802.3 como sinónimos. Ambas se diferencian en uno de los campos de la trama de datos. Las tramas Ethernet e IEEE 802.3 pueden coexistir en la misma red.
VPN
Una red privada virtual o VPN (siglas en inglés de virtual private network), es una tecnología de red que permite una extensión de la red local sobre una red pública o no controlada, como por ejemplo Internet.
Ejemplos comunes son, la posibilidad de conectar dos o más sucursales de una empresa utilizando como vínculo Internet, permitir a los miembros del equipo de soporte técnico la conexión desde su casa al centro de cómputo, o que un usuario pueda acceder a su equipo doméstico desde un sitio remoto, como por ejemplo un hotel. Todo ello utilizando la infraestructura de Internet.
Es una red privada que se extiende, mediante un proceso de encapsulación y en su caso de encriptación, de los paquetes de datos a distintos puntos remotos mediante el uso de unas infraestructuras públicas de transporte.
Los paquetes de datos de la red privada viajan por medio de un "túnel" definido en la red pública.
Ejemplos comunes son, la posibilidad de conectar dos o más sucursales de una empresa utilizando como vínculo Internet, permitir a los miembros del equipo de soporte técnico la conexión desde su casa al centro de cómputo, o que un usuario pueda acceder a su equipo doméstico desde un sitio remoto, como por ejemplo un hotel. Todo ello utilizando la infraestructura de Internet.
Es una red privada que se extiende, mediante un proceso de encapsulación y en su caso de encriptación, de los paquetes de datos a distintos puntos remotos mediante el uso de unas infraestructuras públicas de transporte.
Los paquetes de datos de la red privada viajan por medio de un "túnel" definido en la red pública.
jueves, 22 de abril de 2010
CAPAS DEL MODELO OSI
Este modelo está dividido en siete capas:
Capa física (Capa 1)
Es la que se encarga de las conexiones físicas de la computadora hacia la red, tanto en lo que se refiere al medio físico como a la forma en la que se transmite la información.
Sus principales funciones se pueden resumir como:
Definir el medio o medios físicos por los que va a viajar la comunicación: cable de pares trenzados (o no, como en RS232/EIA232), coaxial, guías de onda, aire, fibra óptica.
Definir las características materiales (componentes y conectores mecánicos) y eléctricas (niveles de tensión) que se van a usar en la transmisión de los datos por los medios físicos.
Definir las características funcionales de la interfaz (establecimiento, mantenimiento y liberación del enlace físico).
Transmitir el flujo de bits a través del medio.
Manejar las señales eléctricas/electromagnéticas
Especificar cables, conectores y componentes de interfaz con el medio de transmisión, polos en un enchufe, etc.
Garantizar la conexión (aunque no la fiabilidad de ésta).
Capa de enlace de datos (Capa 2)
Esta capa se ocupa del direccionamiento físico, de la topología de la red, del acceso a la red, de la notificación de errores, de la distribución ordenada de tramas y del control del flujo.
Se hace un direccionamiento de los datos en la red ya sea en la distribución adecuada desde un emisor a un receptor, la notificación de errores, de la topología de la red de cualquier tipo.
Capa de red (Capa 3)
El objetivo de la capa de red es hacer que los datos lleguen desde el origen al destino, aún cuando ambos no estén conectados directamente. Los dispositivos que facilitan tal tarea se denominan encaminadores, aunque es más frecuente encontrar el nombre inglés routers y, en ocasiones enrutadores.
Los routers trabajan en esta capa, aunque pueden actuar como switch de nivel 2 en determinados casos, dependiendo de la función que se le asigne. Los firewalls actúan sobre esta capa principalmente, para descartar direcciones de máquinas.
En este nivel se realiza el direccionamiento lógico y la determinación de la ruta de los datos hasta su receptor final.
Capa de transporte (Capa 4)
Capa encargada de efectuar el transporte de los datos (que se encuentran dentro del paquete) de la máquina origen a la de destino, independizándolo del tipo de red física que se esté utilizando. La PDU de la capa 4 se llama Segmento. Sus protocolos son TCP y UDP el primero orientado a conexión y el otro sin conexión.
Capa de sesión (Capa 5)
Esta capa es la que se encarga de mantener y controlar el enlace establecido entre los dos computadores que están transmitiendo datos de cualquier índole.
Por lo tanto, el servicio provisto por esta capa es la capacidad de asegurar que, dada una sesión establecida entre dos máquinas, la misma se pueda efectuar para las operaciones definidas de principio a fin, reanudándolas en caso de interrupción. En muchos casos, los servicios de la capa de sesión son parcial o totalmente prescindibles.
Capa de presentación (Capa 6)
El objetivo es encargarse de la representación de la información, de manera que aunque distintos equipos puedan tener diferentes representaciones internas de caracteres los datos lleguen de manera reconocible.
Esta capa es la primera en trabajar más el contenido de la comunicación que el cómo se establece la misma. En ella se tratan aspectos tales como la semántica y la sintaxis de los datos transmitidos, ya que distintas computadoras pueden tener diferentes formas de manejarlas.
Esta capa también permite cifrar los datos y comprimirlos. En pocas palabras es un traductor.
Capa de aplicación (Capa 7)
Ofrece a las aplicaciones la posibilidad de acceder a los servicios de las demás capas y define los protocolos que utilizan las aplicaciones para intercambiar datos, como correo electrónico (POP y SMTP), gestores de bases de datos y servidor de ficheros (FTP). Hay tantos protocolos como aplicaciones distintas y puesto que continuamente se desarrollan nuevas aplicaciones el número de protocolos crece sin parar.
Cabe aclarar que el usuario normalmente no interactúa directamente con el nivel de aplicación. Suele interactuar con programas que a su vez interactúan con el nivel de aplicación pero ocultando la complejidad subyacente
Capa física (Capa 1)
Es la que se encarga de las conexiones físicas de la computadora hacia la red, tanto en lo que se refiere al medio físico como a la forma en la que se transmite la información.
Sus principales funciones se pueden resumir como:
Definir el medio o medios físicos por los que va a viajar la comunicación: cable de pares trenzados (o no, como en RS232/EIA232), coaxial, guías de onda, aire, fibra óptica.
Definir las características materiales (componentes y conectores mecánicos) y eléctricas (niveles de tensión) que se van a usar en la transmisión de los datos por los medios físicos.
Definir las características funcionales de la interfaz (establecimiento, mantenimiento y liberación del enlace físico).
Transmitir el flujo de bits a través del medio.
Manejar las señales eléctricas/electromagnéticas
Especificar cables, conectores y componentes de interfaz con el medio de transmisión, polos en un enchufe, etc.
Garantizar la conexión (aunque no la fiabilidad de ésta).
Capa de enlace de datos (Capa 2)
Esta capa se ocupa del direccionamiento físico, de la topología de la red, del acceso a la red, de la notificación de errores, de la distribución ordenada de tramas y del control del flujo.
Se hace un direccionamiento de los datos en la red ya sea en la distribución adecuada desde un emisor a un receptor, la notificación de errores, de la topología de la red de cualquier tipo.
Capa de red (Capa 3)
El objetivo de la capa de red es hacer que los datos lleguen desde el origen al destino, aún cuando ambos no estén conectados directamente. Los dispositivos que facilitan tal tarea se denominan encaminadores, aunque es más frecuente encontrar el nombre inglés routers y, en ocasiones enrutadores.
Los routers trabajan en esta capa, aunque pueden actuar como switch de nivel 2 en determinados casos, dependiendo de la función que se le asigne. Los firewalls actúan sobre esta capa principalmente, para descartar direcciones de máquinas.
En este nivel se realiza el direccionamiento lógico y la determinación de la ruta de los datos hasta su receptor final.
Capa de transporte (Capa 4)
Capa encargada de efectuar el transporte de los datos (que se encuentran dentro del paquete) de la máquina origen a la de destino, independizándolo del tipo de red física que se esté utilizando. La PDU de la capa 4 se llama Segmento. Sus protocolos son TCP y UDP el primero orientado a conexión y el otro sin conexión.
Capa de sesión (Capa 5)
Esta capa es la que se encarga de mantener y controlar el enlace establecido entre los dos computadores que están transmitiendo datos de cualquier índole.
Por lo tanto, el servicio provisto por esta capa es la capacidad de asegurar que, dada una sesión establecida entre dos máquinas, la misma se pueda efectuar para las operaciones definidas de principio a fin, reanudándolas en caso de interrupción. En muchos casos, los servicios de la capa de sesión son parcial o totalmente prescindibles.
Capa de presentación (Capa 6)
El objetivo es encargarse de la representación de la información, de manera que aunque distintos equipos puedan tener diferentes representaciones internas de caracteres los datos lleguen de manera reconocible.
Esta capa es la primera en trabajar más el contenido de la comunicación que el cómo se establece la misma. En ella se tratan aspectos tales como la semántica y la sintaxis de los datos transmitidos, ya que distintas computadoras pueden tener diferentes formas de manejarlas.
Esta capa también permite cifrar los datos y comprimirlos. En pocas palabras es un traductor.
Capa de aplicación (Capa 7)
Ofrece a las aplicaciones la posibilidad de acceder a los servicios de las demás capas y define los protocolos que utilizan las aplicaciones para intercambiar datos, como correo electrónico (POP y SMTP), gestores de bases de datos y servidor de ficheros (FTP). Hay tantos protocolos como aplicaciones distintas y puesto que continuamente se desarrollan nuevas aplicaciones el número de protocolos crece sin parar.
Cabe aclarar que el usuario normalmente no interactúa directamente con el nivel de aplicación. Suele interactuar con programas que a su vez interactúan con el nivel de aplicación pero ocultando la complejidad subyacente
MODELO OSI
Modelo OSI
El modelo de referencia de Interconexión de Sistemas Abiertos (OSI, Open System Interconnection) fue el modelo de red descriptivo creado por la Organización Internacional para la Estandarización lanzado en 1984. Es decir, fue un marco de referencia para la definición de arquitecturas de interconexión de sistemas de comunicaciones.
Historia
A principios de 1980 el desarrollo de redes sucedió con desorden en muchos sentidos. Se produjo un enorme crecimiento en la cantidad y tamaño de las redes. A medida que las empresas tomaron conciencia de las ventajas de usar tecnologías de conexión, las redes se agregaban o expandían a casi la misma velocidad a la que se introducían las nuevas tecnologías de red.
Para mediados de 1980, estas empresas comenzaron a sufrir las consecuencias de la rápida expansión. De la misma forma en que las personas que no hablan un mismo idioma tienen dificultades para comunicarse, las redes que utilizaban diferentes especificaciones e implementaciones tenían dificultades para intercambiar información. El mismo problema surgía con las empresas que desarrollaban tecnologías de conexiones privadas o propietarias. "Propietario" significa que una sola empresa o un pequeño grupo de empresas controlan todo uso de la tecnología. Las tecnologías de conexión que respetaban reglas propietarias en forma estricta no podían comunicarse con tecnologías que usaban reglas propietarias diferentes.
Para enfrentar el problema de incompatibilidad de redes, la Organización Internacional para la Estandarización (ISO) investigó modelos de conexión como la red de Digital Equipment Corporation (DECnet), la Arquitectura de Sistemas de Red (SNA) y TCP/IP a fin de encontrar un conjunto de reglas aplicables de forma general a todas las redes. Con base en esta investigación, la ISO desarrolló un modelo de red que ayuda a los fabricantes a crear redes que sean compatibles con otras redes.
Modelo de referencia OSI
Siguiendo el esquema de este modelo se crearon numerosos protocolos. El advenimiento de protocolos más flexibles donde las capas no están tan demarcadas y la correspondencia con los niveles no era tan clara puso a este esquema en un segundo plano. Sin embargo es muy usado en la enseñanza como una manera de mostrar como puede estructurarse una "pila" de protocolos de comunicaciones.El modelo especifica el protocolo que debe ser usado en cada capa, y suele hablarse de modelo de referencia ya que es usado como una gran herramienta para la enseñanza de comunicación de redes.
El modelo de referencia de Interconexión de Sistemas Abiertos (OSI, Open System Interconnection) fue el modelo de red descriptivo creado por la Organización Internacional para la Estandarización lanzado en 1984. Es decir, fue un marco de referencia para la definición de arquitecturas de interconexión de sistemas de comunicaciones.
Historia
A principios de 1980 el desarrollo de redes sucedió con desorden en muchos sentidos. Se produjo un enorme crecimiento en la cantidad y tamaño de las redes. A medida que las empresas tomaron conciencia de las ventajas de usar tecnologías de conexión, las redes se agregaban o expandían a casi la misma velocidad a la que se introducían las nuevas tecnologías de red.
Para mediados de 1980, estas empresas comenzaron a sufrir las consecuencias de la rápida expansión. De la misma forma en que las personas que no hablan un mismo idioma tienen dificultades para comunicarse, las redes que utilizaban diferentes especificaciones e implementaciones tenían dificultades para intercambiar información. El mismo problema surgía con las empresas que desarrollaban tecnologías de conexiones privadas o propietarias. "Propietario" significa que una sola empresa o un pequeño grupo de empresas controlan todo uso de la tecnología. Las tecnologías de conexión que respetaban reglas propietarias en forma estricta no podían comunicarse con tecnologías que usaban reglas propietarias diferentes.
Para enfrentar el problema de incompatibilidad de redes, la Organización Internacional para la Estandarización (ISO) investigó modelos de conexión como la red de Digital Equipment Corporation (DECnet), la Arquitectura de Sistemas de Red (SNA) y TCP/IP a fin de encontrar un conjunto de reglas aplicables de forma general a todas las redes. Con base en esta investigación, la ISO desarrolló un modelo de red que ayuda a los fabricantes a crear redes que sean compatibles con otras redes.
Modelo de referencia OSI
Siguiendo el esquema de este modelo se crearon numerosos protocolos. El advenimiento de protocolos más flexibles donde las capas no están tan demarcadas y la correspondencia con los niveles no era tan clara puso a este esquema en un segundo plano. Sin embargo es muy usado en la enseñanza como una manera de mostrar como puede estructurarse una "pila" de protocolos de comunicaciones.El modelo especifica el protocolo que debe ser usado en cada capa, y suele hablarse de modelo de referencia ya que es usado como una gran herramienta para la enseñanza de comunicación de redes.
lunes, 12 de abril de 2010
4pUnT3s
*ANTECEDENTES DE LA RED*
En el mes de julio de 1961 Leonard Kleinrock publicó desde el MIT el primer documento sobre la teoría de conmutación de paquetes. Kleinrock convenció a Lawrence Roberts de la factibilidad teórica de las comunicaciones vía paquetes en lugar de circuitos, lo cual resultó ser un gran avance en el camino hacia el trabajo informático en red. El otro paso fundamental fue hacer dialogar a los ordenadores entre sí. Para explorar este terreno, en 1965, Roberts conectó una computadora TX2 en Massachusetts con un Q-32 en California a través de una línea telefónica conmutada de baja velocidad, creando así la primera (aunque reducida) red de computadoras de área amplia jamás construida.
1969. La primera red interconectada nace el 21 de noviembre de 1969, cuando se crea el primer enlace entre las universidades de UCLA y Stamford por medio de la línea telefónica conmutada, y gracias a los trabajos y estudios anteriores de varios científicos y organizaciones desde 1959 (ver Arpanet). El mito de que ARPANET, la primera red, se construyó simplemente para sobrevivir a ataques nucleares sigue siendo muy popular. Sin embargo, este no fue el único motivo. Si bien es cierto que ARPANET fue diseñada para sobrevivir a fallos en la red, la verdadera razón para ello era que los nodos de conmutación eran poco fiables, tal y como se atestigua en la siguiente cita:
1972. Se realizó la Primera demostración pública de ARPANET, una nueva red de comunicaciones financiada por la DARPA que funcionaba de forma distribuida sobre la red telefónica conmutada. El éxito de ésta nueva arquitectura sirvió para que, en 1973, la DARPA iniciara un programa de investigación sobre posibles técnicas para interconectar redes (orientadas al tráfico de paquetes) de distintas clases. Para este fin, desarrollaron nuevos protocolos de comunicaciones que permitiesen este intercambio de información de forma "transparente" para las computadoras conectadas. De la filosofía del proyecto surgió el nombre de "Internet", que se aplicó al sistema de redes interconectadas mediante los protocolos TCP e IP.
1983. El 1 de enero, ARPANET cambió el protocolo NCP por TCP/IP. Ese mismo año, se creó el IAB con el fin de estandarizar el protocolo TCP/IP y de proporcionar recursos de investigación a Internet. Por otra parte, se centró la función de asignación de identificadores en la IANA que, más tarde, delegó parte de sus funciones en el Internet registry que, a su vez, proporciona servicios a los DNS.
1986. La NSF comenzó el desarrollo de NSFNET que se convirtió en la principal Red en árbol de Internet, complementada después con las redes NSINET y ESNET, todas ellas en Estados Unidos. Paralelamente, otras redes troncales en Europa, tanto públicas como comerciales, junto con las americanas formaban el esqueleto básico ("backbone") de Internet.
1989. Con la integración de los protocolos OSI en la arquitectura de Internet, se inició la tendencia actual de permitir no sólo la interconexión de redes de estructuras dispares, sino también la de facilitar el uso de distintos protocolos de comunicaciones.
En el CERN de Ginebra, un grupo de físicos encabezado por Tim Berners-Lee creó el lenguaje HTML, basado en el SGML. En 1990 el mismo equipo construyó el primer cliente Web, llamado World Wide Web (WWW), y el primer servidor web.
2006. El 3 de enero, Internet alcanzó los mil cien millones de usuarios. Se prevé que en diez años, la cantidad de navegantes de la Red aumentará a 2.000 millones.[4]
Transmisión Asíncrona.
Esta se desarrolló para solucionar el problema de la sincronía y la incomodidad de los equipos.
En este caso la temporización empieza al comienzo de un caracter y termina al final, se añaden dos elementos de señal a cada caracter para indicar al dispositivo receptor el comienzo de este y su terminación.
Al inicio del caracter se añade un elemento que se conoce como "Start Space"
(espacio de arranque),y al final una marca de terminación.
Para enviar un dato se inicia la secuencia de temporización en el dispositivo receptor con el elemento de señal y al final se marca su terminación.
Transmisión Sincronía
Este tipo de transmisión se caracteriza porque antes de la transmisión de propia de datos, se envían señales para la identificación de lo que va a venir por la línea, es mucho mas eficiente que la Asincrona pero su uso se limita a líneas especiales para la comunicación de ordenadores, porque en líneas telefónicas deficientes pueden aparecer problemas.
Por ejemplo una transmisión serie es Sincrona si antes de transmitir cada bit se envía la señal de reloj y en paralelo es sincrona cada vez que transmitimos un grupo de bits.
*BANDA ANCHA*
Se conoce como banda ancha en telecomunicaciones a la transmisión de datos en la cual se envían simultáneamente varias piezas de información, con el objeto de incrementar la velocidad de transmisión efectiva. En ingeniería de redes este término se utiliza también para los métodos en donde dos o más señales comparten un medio de transmisión.
Algunas de las variantes de los servicios de línea de abonado digital (del inglés Digital Subscriber Line, DSL) son de banda ancha en el sentido de que la información se envía sobre un canal y la voz por otro canal, como el canal ATC, pero compartiendo el mismo par de cables. Los módems analógicos que operan con velocidades mayores a 600 bps también son técnicamente banda ancha, pues obtienen velocidades de transmisión efectiva mayores usando muchos canales en donde la velocidad de cada canal se limita a 600 baudios. Por ejemplo, un modem de 2400 bps usa cuatro canales de 600 baudios. Este método de transmisión contrasta con la transmisión en banda base, en donde un tipo de señal usa todo el ancho de banda del medio de transmisión, como por ejemplo Ethernet 100BASE-T.
Es una tecnología de modems que permite el trafico de datos se realice a una velocidad extraordinaria a través de una línea telefónica convencional. Además se puede mantener una conversación por teléfono mientras se está navegando por Internet.
*BANDA BASE*
En Telecomunicaciones, el término banda base se refiere a la banda de frecuencias producida por un transductor, tal como un micrófono, un manipulador telegráfico u otro dispositivo generador de señales que no es necesario adaptarlo al medio por el que se va a trasmitir.
Banda base es la señal de una sola transmisión en un canal, banda ancha significa que lleva más de una señal y cada una de ellas se transmite en diferentes canales, hasta su número máximo de canal.
En los sistemas de transmisión, la banda base es generalmente utilizada para modular una portadora. Durante el proceso de demodulación se reconstruye la señal banda base original. Por ello, podemos decir que la banda base describe el estado de la señal antes de la modulación y de la multiplexación y después de la demultiplexación y desmodulación.
Las frecuencias de banda base se caracterizan por ser generalmente mucho más bajas que las resultantes cuando éstas se utilizan para modular una portadora o subportadora. Por ejemplo, es señal de banda base la obtenida de la salida de video compuesto de dispositivos como grabadores/reproductores de video y consolas de juego, a diferencia de las señales de televisión que deben ser moduladas para poder transportarlas vía aérea (por señal libre o satélite) o por cable.
Tipos de Transmisión de Datos
Transmisión Análoga
En un sistema analógico de transmisión tenemos a la salida de este una cantidad que varia continuamente.
En la transmisión analógica, la señal que transporta la información es continua, en la señal digital es discreta. La forma más sencilla de transmisión digital es la binaria, en la cual a cada elemento de información se le asigna uno de dos posibles estados.
Para identificar una gran cantidad de información se codifica un número específico de bits, el cual se conoce como caracter. Esta codificación se usa para la información e escrita.
Ej: Teletipo = Servicio para la transmisión de un telegrama.
La mayor de las computadoras en servicio hoy en día utilizan u operan con el sistema binario por lo cual viene más la transmisión binaria, ya sea de terminal a computadora o de computadora a computadora.
Transmisión Digital
En la transmisión digital existen dos notables ventajas lo cual hace que tenga gran aceptación cuando se compara con la analógica. Estas son:
· El ruido no se acumula en los repetidores.
· El formato digital se adapta por si mismo de manera ideal a la tecnología de estado sólido, particularmente en los circuitos integrados.
La mayor parte de la información que se transmite en una red portadora es de naturaleza analógica,
Ej: La voz
El vídeo
Al convertir estas señales al formato digital se pueden aprovechar las dos características anteriormente citadas.
Para transmitir información digital(binaria 0 ó 1) por la red telefónica, la señal digital se convierte a una señal analógica compatible con la el equipo de la red y esta función se realiza en el Módem.
Para hacer lo inverso o sea con la señal analógica, se usan dos métodos diferentes de modulación:
La modulación por codificación de pulsos(MCP).
Es ventajoso transmitir datos en forma binaria en vez de convertirlos a analógico. Sin embargo, la transmisión digital está restringida a canales con un ancho de banda mucho mayor que el de la banda de la voz.
Modos de Transmisión de Datos
Según el sentido de la transmisión podemos encontrarnos con tres tipos diferentes:
Simplex:
Este modo de transmisión permite que la información discurra en un solo sentido y de forma permanente, con esta formula es difícil la corrección de errores causados por deficiencias de línea. Como ejemplos de la vida diaria tenemos, la televisión y la radio.
Half Duplex.
En este modo, la transmisión fluye como en el anterior, o sea, en un único sentido de la transmisión de dato, pero no de una manera permanente, pues el sentido puede cambiar. Como ejemplo tenemos los Walkis Talkis.
Full Duplex.
Es el método de comunicación más aconsejable, puesto que en todo momento la comunicación puede ser en dos sentidos posibles y así pueden corregir los errores de manera instantánea y permanente. El ejemplo típico sería el teléfono.
Semidúplex
Se denomina semidúplex a un modo de intercambio de datos entre dos terminales, en la que la transmisión se lleva a cabo de manera alternativa. Esto es, mientras un terminal está transmitiendo el otro solo puede recibir y viceversa.
Este tipo de transmisión ha sido el utilizado durante mucho tiempo por los teletipos y también es utilizado en la comunicación de datos mediante transceptores.
*CONCENTRADORES*
Hay tres tipos de concentradores: pasivos, inteligentes y de conmutación.• Un concentrador pasivo no hace más que actuar como conducto para los datos que van de un ordenador en uno de los radios de la rueda a otro que se encuentra en otro radio. Hay que conocer tres hechos importantes acerca de los concentradores pasivos, pues son los que constituyen la diferencia con los otros dos tipos de concentrador. Primero, los concentradores pasivos comparten todo el ancho de banda de la red internamente. Supongamos que hay ocho ordenadores conectados a un concentrador pasivo lOBaseT de 8 puertos. Si copiamos archivos de un ordenador a otro utilizando 5 Mbps de ancho de banda, los seis ordenadores restantes deben compartir para sus asuntos los 5 Mbps de ancho de banda que quedan libres. Eso es porque cuando un paquete llega desde un ordenador en uno de los radios, el concentrador pasivo lo copia en todos los radios, aunque sólo vaya destinado a un ordenador determinado. En un momento compararemos eso con el comportamiento de un concentrador de conmutación. Segundo, con un concentrador pasivo, la única información que tenemos de lo que está pasando es un LED que indica cuándo está conectado un ordenador a un puerto (el LED es una pequeña luz) y cuándo hay tráfico que proviene o se dirige a ese ordenador (el LED está intermitente). También compararemos eso con el comportamiento de un concentrador inteligente. Tercero, un concentrador pasivo hace que una red Ethernet parezca ser un segmento, limitando las distancias máximas y aumentando las colisiones.• Un concentrador de conmutación, también llamado un conmutador, lee la dirección de destino de cada paquete y lo envía al puerto correcto (en lugar de enviarlo simultáneamente a todos los puertos, excepto en el caso de ciertos paquetes de difusión especiales utilizados por DHCP y algunos otros protocolos). Esta diferencia con los concentradores pasivos proporciona una importante ventaja: dado que cada puerto es una conexión independiente entre los aparatos conectados, en lugar de compartida, cada conexión recibe todo el ancho de banda disponible en ese tipo de red. Por ejemplo, supongamos que en nuestra red de ocho ordenadores del ejemplo del concentrador pasivo ahora usamos un concentrador de conmutación. Cuando empezamos a copiar archivos de un ordenador a otro, el concentrador de conmutación hace que esos dos ordenadores (y el resto de los ordenadores de la red) piensen que están conectados directamente. Si otros dos ordenadores establecen una comunicación mientras se están copiando los archivos, el concentrador de conmutación hace lo mismo para ellos, proporcionándoles una conexión directa virtual. Un concentrador de conmutación proporcionan un mejor rendimiento que el concentrador pasivo: la red va más rápido si normalmente hay pares de ordenadores comunicándose entre sí. Los concentradores de conmutación también son útiles para conectar concentradores pasivos u otros concentradores de conmutación en configuraciones de red más grandes. Para redes pequeñas, no habrá mucha diferencia, si hay alguna, entre usar conmutadores pasivos o de conmutación pero, afortunadamente, hoy día casi todos los concentradores son de conmutación gracias a que se ha reducido el coste de los circuitos necesarios.• Un concentrador inteligente añade funciones que permiten a los administradores de red controlar el tráfico que atraviesa el concentrador y configurar cada puerto independientemente. Generalmente, se utilizan estas funciones a través de un navegador Web conectado a un servidor Web integrado en el concentrador. Es inusual que se necesite un concentrador inteligente en una red pequeña.
*REDES*
Redes de Área Local (LAN)
Son redes de propiedad privada, de hasta unos cuantos kilómetros de extensión. Por ejemplo una oficina o un centro educativo.
Se usan para conectar computadoras personales o estaciones de trabajo, con objeto de compartir recursos e intercambiar información.
Están restringidas en tamaño, lo cual significa que el tiempo de transmisión, en el peor de los casos, se conoce, lo que permite cierto tipo de diseños (deterministas) que de otro modo podrían resultar ineficientes. Además, simplifica la administración de la red.
Suelen emplear tecnología de difusión mediante un cable sencillo al que están conectadas todas las máquinas.
Operan a velocidades entre 10 y 100 Mbps.
Tienen bajo retardo y experimentan pocos errores.
Redes de Área Metropolitana (MAN)
Son una versión mayor de la LAN y utilizan una tecnología muy similar. Actualmente esta clasificación ha caído en desuso, normalmente sólo distinguiremos entre redes LAN y WAN.
Redes de Área Amplia (WAN)
Son redes que se extienden sobre un área geográfica extensa. Contiene una colección de máquinas dedicadas a ejecutar los programas de usuarios (hosts). Estos están conectados por la red que lleva los mensajes de un host a otro. Estas LAN de host acceden a la subred de la WAN por un router. Suelen ser por tanto redes punto a punto.
La subred tiene varios elementos:
- Líneas de comunicación: Mueven bits de una máquina a otra.
- Elementos de conmutación: Máquinas especializadas que conectan dos o más líneas de transmisión. Se suelen llamar encaminadores o routers.
Cada host está después conectado a una LAN en la cual está el encaminador que se encarga de enviar la información por la subred.
Una WAN contiene numerosos cables conectados a un par de encaminadores. Si dos encaminadores que no comparten cable desean comunicarse, han de hacerlo a través de encaminadores intermedios. El paquete se recibe completo en cada uno de los intermedios y se almacena allí hasta que la línea de salida requerida esté libre.
Se pueden establecer WAN en sistemas de satélite o de radio en tierra en los que cada encaminador tiene una antena con la cual poder enviar y recibir la información. Por su naturaleza, las redes de satélite serán de difusión.
*CONCENTRADORES*
Hay tres tipos de concentradores: pasivos, inteligentes y de conmutación.
• Un concentrador pasivo no hace más que actuar como conducto para los datos que van de un ordenador en uno de los radios de la rueda a otro que se encuentra en otro radio. Hay que conocer tres hechos importantes acerca de los concentradores pasivos, pues son los que constituyen la diferencia con los otros dos tipos de concentrador. Primero, los concentradores pasivos comparten todo el ancho de banda de la red internamente. Supongamos que hay ocho ordenadores conectados a un concentrador pasivo lOBaseT de 8 puertos. Si copiamos archivos de un ordenador a otro utilizando 5 Mbps de ancho de banda, los seis ordenadores restantes deben compartir para sus asuntos los 5 Mbps de ancho de banda que quedan libres. Eso es porque cuando un paquete llega desde un ordenador en uno de los radios, el concentrador pasivo lo copia en todos los radios, aunque sólo vaya destinado a un ordenador determinado. En un momento compararemos eso con el comportamiento de un concentrador de conmutación. Segundo, con un concentrador pasivo, la única información que tenemos de lo que está pasando es un LED que indica cuándo está conectado un ordenador a un puerto (el LED es una pequeña luz) y cuándo hay tráfico que proviene o se dirige a ese ordenador (el LED está intermitente). También compararemos eso con el comportamiento de un concentrador inteligente. Tercero, un concentrador pasivo hace que una red Ethernet parezca ser un segmento, limitando las distancias máximas y aumentando las colisiones.• Un concentrador de conmutación, también llamado un conmutador, lee la dirección de destino de cada paquete y lo envía al puerto correcto (en lugar de enviarlo simultáneamente a todos los puertos, excepto en el caso de ciertos paquetes de difusión especiales utilizados por DHCP y algunos otros protocolos). Esta diferencia con los concentradores pasivos proporciona una importante ventaja: dado que cada puerto es una conexión independiente entre los aparatos conectados, en lugar de compartida, cada conexión recibe todo el ancho de banda disponible en ese tipo de red. Por ejemplo, supongamos que en nuestra red de ocho ordenadores del ejemplo del concentrador pasivo ahora usamos un concentrador de conmutación. Cuando empezamos a copiar archivos de un ordenador a otro, el concentrador de conmutación hace que esos dos ordenadores (y el resto de los ordenadores de la red) piensen que están conectados directamente. Si otros dos ordenadores establecen una comunicación mientras se están copiando los archivos, el concentrador de conmutación hace lo mismo para ellos, proporcionándoles una conexión directa virtual. Un concentrador de conmutación proporcionan un mejor rendimiento que el concentrador pasivo: la red va más rápido si normalmente hay pares de ordenadores comunicándose entre sí. Los concentradores de conmutación también son útiles para conectar concentradores pasivos u otros concentradores de conmutación en configuraciones de red más grandes. Para redes pequeñas, no habrá mucha diferencia, si hay alguna, entre usar conmutadores pasivos o de conmutación pero, afortunadamente, hoy día casi todos los concentradores son de conmutación gracias a que se ha reducido el coste de los circuitos necesarios.• Un concentrador inteligente añade funciones que permiten a los administradores de red controlar el tráfico que atraviesa el concentrador y configurar cada puerto independientemente. Generalmente, se utilizan estas funciones a través de un navegador Web conectado a un servidor Web integrado en el concentrador. Es inusual que se necesite un concentrador inteligente en una red pequeña.
EL HUB
Un hub o concentrador es un equipo de redes que permite conectar entre sí otros equipos y retransmite los paquetes que recibe desde cualquiera de ellos a todos los demás. Los hubs han dejado de ser utilizados, debido al gran nivel de colisiones y tráfico de red que propician. Un concentrador funciona repitiendo cada paquete de datos en cada uno de los puertos con los que cuenta, excepto el puerto del que ha recibido el paquete, de forma que todos los puntos tienen acceso a los datos.
El Switch
El Switch (o conmutador) trabaja en las dos primeras capas del modelo OSI, es decir que éste distribuye los datos a cada máquina de destino, mientras que el hub envía todos los datos a todas las máquinas que responden. Concebido para trabajar en redes con una cantidad de máquinas ligeramente más elevado que el hub, éste elimina las eventuales colisiones de paquetes (una colisión aparece cuando una máquina intenta comunicarse con una segunda mientras que otra ya está en comunicación con ésta…, la primera reintentará luego).
3. El Router
El Router permite el uso de varias clases de direcciones IP dentro de una misma red. De este modo permite la creación de sub redes. Es utilizado en instalaciones más grandes, donde es necesaria (especialmente por razones de seguridad y simplicidad) la creación de varias sub redes. Cuando la Internet llega por medio de un cable RJ45, es necesario utilizar un router para conectar una sub red (red local, LAN) a Internet, ya que estas dos conexiones utilizan diferentes clases de dirección IP (sin embargo es posible pero no muy aconsejado utilizar una clase A o B para una red local, estas corresponden a las clases de Internet). El router equivale a un PC gestionando varias conexiones de red (los antiguos routers eran PCs) Los routers son compatibles con NAT, lo que permite utilizarlos para redes más o menos extensas disponiendo de gran cantidad de máquinas y poder crear “correctamente” sub redes. También tienen la función de cortafuegos (firewall) para proteger la instalación.
4. El repetidor
Este dispositivo sólo amplifica la señal de la red y es útil en las redes que se extienden grandes distancias.
TOPOLOGIAS
Red en anillo
Topología de red en la que las estaciones se conectan formando un anillo. Cada estación está conectada a la siguiente y la última está conectada a la primera. Cada estación tiene un receptor y un transmisor que hace la función de repetidor, pasando la señal a la siguiente estación del anillo.
En este tipo de red la comunicación se da por el paso de un token o testigo, que se puede conceptualizar como un cartero que pasa recogiendo y entregando paquetes de información, de esta manera se evita perdida de información debido a colisiones.
Cabe mencionar que si algún nodo de la red se cae (termino informático para decir que esta en mal funcionamiento o no funciona para nada) la comunicación en todo el anillo se pierde.
Red en árbol
Topología de red en la que los nodos están colocados en forma de árbol. Desde una visión topológica, la conexión en árbol es parecida a una serie de redes en estrella interconectadas.
Es una variación de la red en bus, la falla de un nodo no implica interrupción en las comunicaciones. Se comparte el mismo canal de comunicaciones.
Cuenta con un cable principal (backbone) al que hay conectadas redes individuales en bus.
Red en bus
Topología de red en la que todas las estaciones están conectadas a un único canal de comunicaciones por medio de unidades interfaz y derivadores. Las estaciones utilizan este canal para comunicarse con el resto.
La topología de bus tiene todos sus nodos conectados directamente a un enlace y no tiene ninguna otra conexión entre nodos. Físicamente cada host está conectado a un cable común, por lo que se pueden comunicar directamente, aunque la ruptura del cable hace que los hosts queden desconectados.
La topología de bus permite que todos los dispositivos de la red puedan ver todas las señales de todos los demás dispositivos, lo que puede ser ventajoso si desea que todos los dispositivos obtengan esta información. Sin embargo, puede representar una desventaja, ya que es común que se produzcan problemas de tráfico y colisiones, que se pueden paliar segmentando la red en varias partes. Es la topología más común en pequeñas LAN, con hub o switch final en uno de los extremos.
Red en estrella
Red en la cual las estaciones están conectadas directamente al servidor u ordenador y todas las comunicaciones se han de hacer necesariamente a través de él. Todas las estaciones están conectadas por separado a un centro de comunicaciones, concentrador o nodo central, pero no están conectadas entre sí. Esta red crea una mayor facilidad de supervisión y control de información ya que para pasar los mensajes deben pasar por el hub o concentrador, el cual gestiona la redistribución de la información a los demás nodos. La fiabilidad de este tipo de red es que el malfuncionamiento de un ordenador no afecta en nada a la red entera, puesto que cada ordenar se conecta independientemente del hub, el costo del cableado puede llegar a ser muy alto. Su punto débil consta en el hub ya que es el que sostiene la red en uno.
*Cable coaxial*
Cable coaxial RG-59.A: Cubierta protectora de plásticoB: Malla de cobreC: AislanteD: Núcleo de cobre.
El cable coaxial fue creado en la década de los 30, y es un cable utilizado para transportar señales eléctricas de alta frecuencia que posee dos conductores concéntricos, uno central, llamado vivo, encargado de llevar la información, y uno exterior, de aspecto tubular, llamado malla o blindaje, que sirve como referencia de tierra y retorno de las corrientes. Entre ambos se encuentra una capa aislante llamada dieléctrico, de cuyas características dependerá principalmente la calidad del cable. Todo el conjunto suele estar protegido por una cubierta aislante.
El conductor central puede estar constituido por un alambre sólido o por varios hilos retorcidos de cobre; mientras que el exterior puede ser una malla trenzada, una lámina enrollada o un tubo corrugado de cobre o aluminio. En este último caso resultará un cable semirrígido.
Debido a la necesidad de manejar frecuencias cada vez más altas y a la digitalización de las transmisiones, en años recientes se ha sustituido paulatinamente el uso del cable coaxial por el de fibra óptica, en particular para distancias superiores a varios kilómetros, porque el ancho de banda de esta última es muy superior.
*Cable de par trenzado*
El cable de par trenzado es una forma de conexión en la que dos aisladores son entrelazados para tener menores interferencias y aumentar la potencia y la diafonía de los cables adyacentes.
El entrelazado de los cables disminuye la interferencia debido a que el área de bucle entre los cables, la cual determina el acoplamiento eléctrico en la señal, se ve aumentada. En la operación de balanceado de pares, los dos cables suelen llevar señales paralelas y adyacentes (modo diferencial), las cuales son combinadas mediante sustracción en el destino. El ruido de los dos cables se aumenta mutuamente en esta sustracción debido a que ambos cables están expuestos a EMI similares.
La tasa de trenzado, usualmente definida en vueltas por metro, forma parte de las especificaciones de un tipo concreto de cable. Cuanto menor es el número de vueltas, menor es la atenuación de la diafonía. Donde los pares no están trenzados, como en la mayoría de conexiones telefónicas residenciales, un miembro del par puede estar más cercano a la fuente que el otro y, por tanto, expuesto a niveles ligeramente distintos de IEM.
El cable de par trenzado debe emplear conectores RJ45 para unirse a los distintos elementos de hardware que componen la red. Actualmente de los ocho cables sólo cuatro se emplean para la transmisión de los datos. Éstos se conectan a los pines del conector RJ45 de la siguiente forma: 1, 2 (para transmitir), 3 y 6 (para recibir).
La Galga o AWG, es un organismo de normalización sobre el cableado. Por ejemplo se puede encontrar que determinado cable consta de un par de hilos de 22 AWG.
AWG hace referencia al grosor de los hilos. Cuando el grosor de los hilos aumenta el AWG disminuye. El hilo telefónico se utiliza como punto de referencia; tiene un grosor de 22 AWG. Un hilo de grosor 14 AWG es más grueso, y uno de 26 AWG es más delgado.
Fibra óptica*
Un cable de fibra óptica de TOSLINK para audio iluminado desde un extremo.
La fibra óptica es un medio de transmisión empleado habitualmente en redes de datos; un hilo muy fino de material transparente, vidrio o materiales plásticos, por el que se envían pulsos de luz que representan los datos a transmitir. El haz de luz queda completamente confinado y se propaga por el núcleo de la fibra con un ángulo de reflexión por encima del ángulo límite de reflexión total, en función de la ley de Snell. La fuente de luz puede ser láser o un LED.
Las fibras se utilizan ampliamente en telecomunicaciones, ya que permiten enviar gran cantidad de datos a una gran distancia, con velocidades similares a las de radio y/o cable. Son el medio de transmisión por excelencia al ser inmune a las interferencias electromagneticas, también se utilizan para redes locales, en donde se necesite aprovechar las ventajas de la fibra óptica sobre otros medios de transmisión.
Protocolos de redes
Un protocolo de red es como un lenguaje para la comunicación de información. Son las reglas y procedimientos que se utilizan en una red para comunicarse entre los nodos que tienen acceso al sistema de cable. Los protocolos gobiernan dos niveles de comunicaciones:
· Los protocolos de alto nivel: Estos definen la forma en que se comunican las aplicaciones.
· Los protocolos de bajo nivel: Estos definen la forma en que se transmiten las señales por cable.
Como es frecuente en el caso de las computadoras el constante cambio, también los protocolos están en continuo cambio. Actualmente, los protocolos más comúnmente utilizados en las redes son Ethernet, Token Ring y ARCNET. Cada uno de estos está diseñado para cierta clase de topología de red y tienen ciertas características estándar.
EthernetActualmente es el protocolo más sencillo y es de bajo costo. Utiliza la topología de "Bus" lineal.
Token RingEl protocolo de red IBM es el Token ring, el cual se basa en la topología de anillo.
ArnetSe basa en la topología de estrella o estrella distribuida, pero tiene una topología y protocolo propio.
*protocolo HTTP*
Desde 1990, el protocolo HTTP (Protocolo de transferencia de hipertexto) es el protocolo más utilizado en Internet. La versión 0.9 sólo tenía la finalidad de transferir los datos a través de Internet (en particular páginas Web escritas en HTML). La versión 1.0 del protocolo (la más utilizada) permite la transferencia de mensajes con encabezados que describen el contenido de los mensajes mediante la codificación MIME.
El propósito del protocolo HTTP es permitir la transferencia de archivos (principalmente, en formato HTML). entre un navegador (el cliente) y un servidor web (denominado, entre otros, httpd en equipos UNIX) localizado mediante una cadena de caracteres denominada dirección URL.
Comunicación entre el navegador y el servidor
La comunicación entre el navegador y el servidor se lleva a cabo en dos etapas:
El navegador realiza una solicitud HTTP
El servidor procesa la solicitud y después envía una respuesta HTTP
En realidad, la comunicación se realiza en más etapas si se considera el procesamiento de la solicitud en el servidor. Dado que sólo nos ocupamos del protocolo HTTP, no se explicará la parte del procesamiento en el servidor en esta sección del artículo. Si este tema les interesa, puede consultar el articulo sobre el tratamiento de CGI.
*PROTOCOLO IP*
Internet Protocol (en español Protocolo de Internet) o IP es un protocolo no orientado a conexión usado tanto por el origen como por el destino para la comunicación de datos a través de una red de paquetes conmutados.
Los datos en una red basada en IP son enviados en bloques conocidos como paquetes o datagramas (en el protocolo IP estos términos se suelen usar indistintamente). En particular, en IP no se necesita ninguna configuración antes de que un equipo intente enviar paquetes a otro con el que no se había comunicado antes.
IP provee un servicio de datagramas no fiable (también llamado del mejor esfuerzo (best effort), lo hará lo mejor posible pero garantizando poco). IP no provee ningún mecanismo para determinar si un paquete alcanza o no su destino y únicamente proporciona seguridad (mediante checksums o sumas de comprobación) de sus cabeceras y no de los datos transmitidos. Por ejemplo, al no garantizar nada sobre la recepción del paquete, éste podría llegar dañado, en otro orden con respecto a otros paquetes, duplicado o simplemente no llegar. Si se necesita fiabilidad, ésta es proporcionada por los protocolos de la capa de transporte, como TCP.
Si la información a transmitir ("datagramas") supera el tamaño máximo "negociado" (MTU) en el tramo de red por el que va a circular podrá ser dividida en paquetes más pequeños, y reensamblada luego cuando sea necesario. Estos fragmentos podrán ir cada uno por un camino diferente dependiendo de como estén de congestionadas las rutas en cada momento.
Las cabeceras IP contienen las direcciones de las máquinas de origen y destino (direcciones IP), direcciones que serán usadas por los conmutadores de paquetes (switches) y los enrutadores (routers) para decidir el tramo de red por el que reenviarán los paquetes.
El IP es el elemento común en la Internet de hoy. El actual y más popular protocolo de red es IPv4. IPv6 es el sucesor propuesto de IPv4; poco a poco Internet está agotando las direcciones disponibles por lo que IPv6 utiliza direcciones de fuente y destino de 128 bits (lo cual asigna a cada milímetro cuadrado de la superficie de la Tierra la colosal cifra de 670.000 millones de direcciones IP), muchas más direcciones que las que provee IPv4 con 32 bits. Las versiones de la 0 a la 3 están reservadas o no fueron usadas. La versión 5 fue usada para un protocolo experimental. Otros números han sido asignados, usualmente para protocolos experimentales, pero no han sido muy extendidos.
Internet Protocol (IP)
Familia:
Familia de protocolos de Internet
Función:
Envío de paquetes de datos tanto a nivel local como a través de redes.
Última versión:
IPv6
Ubicación en la pila de protocolos
Aplicación
http, ftp, DNS, ...
Transporte
TCP, UDP, ...
Red
IP
Enlace
Ethernet, Token Ring,FDDI, ...
Estándares:
RFC 791 (1981)
RFC 2460 (IPv6, 1998
ARMADO DE CABLE CRUZADO
Para armar un cable de red necesitamos los siguientes materiales y herramientas: cable UTP de 4 pares (la extensión no mayor de 100 mts.), conectores RJ45 de 8 contactos y las tenazas para cable de red.
En el mes de julio de 1961 Leonard Kleinrock publicó desde el MIT el primer documento sobre la teoría de conmutación de paquetes. Kleinrock convenció a Lawrence Roberts de la factibilidad teórica de las comunicaciones vía paquetes en lugar de circuitos, lo cual resultó ser un gran avance en el camino hacia el trabajo informático en red. El otro paso fundamental fue hacer dialogar a los ordenadores entre sí. Para explorar este terreno, en 1965, Roberts conectó una computadora TX2 en Massachusetts con un Q-32 en California a través de una línea telefónica conmutada de baja velocidad, creando así la primera (aunque reducida) red de computadoras de área amplia jamás construida.
1969. La primera red interconectada nace el 21 de noviembre de 1969, cuando se crea el primer enlace entre las universidades de UCLA y Stamford por medio de la línea telefónica conmutada, y gracias a los trabajos y estudios anteriores de varios científicos y organizaciones desde 1959 (ver Arpanet). El mito de que ARPANET, la primera red, se construyó simplemente para sobrevivir a ataques nucleares sigue siendo muy popular. Sin embargo, este no fue el único motivo. Si bien es cierto que ARPANET fue diseñada para sobrevivir a fallos en la red, la verdadera razón para ello era que los nodos de conmutación eran poco fiables, tal y como se atestigua en la siguiente cita:
1972. Se realizó la Primera demostración pública de ARPANET, una nueva red de comunicaciones financiada por la DARPA que funcionaba de forma distribuida sobre la red telefónica conmutada. El éxito de ésta nueva arquitectura sirvió para que, en 1973, la DARPA iniciara un programa de investigación sobre posibles técnicas para interconectar redes (orientadas al tráfico de paquetes) de distintas clases. Para este fin, desarrollaron nuevos protocolos de comunicaciones que permitiesen este intercambio de información de forma "transparente" para las computadoras conectadas. De la filosofía del proyecto surgió el nombre de "Internet", que se aplicó al sistema de redes interconectadas mediante los protocolos TCP e IP.
1983. El 1 de enero, ARPANET cambió el protocolo NCP por TCP/IP. Ese mismo año, se creó el IAB con el fin de estandarizar el protocolo TCP/IP y de proporcionar recursos de investigación a Internet. Por otra parte, se centró la función de asignación de identificadores en la IANA que, más tarde, delegó parte de sus funciones en el Internet registry que, a su vez, proporciona servicios a los DNS.
1986. La NSF comenzó el desarrollo de NSFNET que se convirtió en la principal Red en árbol de Internet, complementada después con las redes NSINET y ESNET, todas ellas en Estados Unidos. Paralelamente, otras redes troncales en Europa, tanto públicas como comerciales, junto con las americanas formaban el esqueleto básico ("backbone") de Internet.
1989. Con la integración de los protocolos OSI en la arquitectura de Internet, se inició la tendencia actual de permitir no sólo la interconexión de redes de estructuras dispares, sino también la de facilitar el uso de distintos protocolos de comunicaciones.
En el CERN de Ginebra, un grupo de físicos encabezado por Tim Berners-Lee creó el lenguaje HTML, basado en el SGML. En 1990 el mismo equipo construyó el primer cliente Web, llamado World Wide Web (WWW), y el primer servidor web.
2006. El 3 de enero, Internet alcanzó los mil cien millones de usuarios. Se prevé que en diez años, la cantidad de navegantes de la Red aumentará a 2.000 millones.[4]
Transmisión Asíncrona.
Esta se desarrolló para solucionar el problema de la sincronía y la incomodidad de los equipos.
En este caso la temporización empieza al comienzo de un caracter y termina al final, se añaden dos elementos de señal a cada caracter para indicar al dispositivo receptor el comienzo de este y su terminación.
Al inicio del caracter se añade un elemento que se conoce como "Start Space"
(espacio de arranque),y al final una marca de terminación.
Para enviar un dato se inicia la secuencia de temporización en el dispositivo receptor con el elemento de señal y al final se marca su terminación.
Transmisión Sincronía
Este tipo de transmisión se caracteriza porque antes de la transmisión de propia de datos, se envían señales para la identificación de lo que va a venir por la línea, es mucho mas eficiente que la Asincrona pero su uso se limita a líneas especiales para la comunicación de ordenadores, porque en líneas telefónicas deficientes pueden aparecer problemas.
Por ejemplo una transmisión serie es Sincrona si antes de transmitir cada bit se envía la señal de reloj y en paralelo es sincrona cada vez que transmitimos un grupo de bits.
*BANDA ANCHA*
Se conoce como banda ancha en telecomunicaciones a la transmisión de datos en la cual se envían simultáneamente varias piezas de información, con el objeto de incrementar la velocidad de transmisión efectiva. En ingeniería de redes este término se utiliza también para los métodos en donde dos o más señales comparten un medio de transmisión.
Algunas de las variantes de los servicios de línea de abonado digital (del inglés Digital Subscriber Line, DSL) son de banda ancha en el sentido de que la información se envía sobre un canal y la voz por otro canal, como el canal ATC, pero compartiendo el mismo par de cables. Los módems analógicos que operan con velocidades mayores a 600 bps también son técnicamente banda ancha, pues obtienen velocidades de transmisión efectiva mayores usando muchos canales en donde la velocidad de cada canal se limita a 600 baudios. Por ejemplo, un modem de 2400 bps usa cuatro canales de 600 baudios. Este método de transmisión contrasta con la transmisión en banda base, en donde un tipo de señal usa todo el ancho de banda del medio de transmisión, como por ejemplo Ethernet 100BASE-T.
Es una tecnología de modems que permite el trafico de datos se realice a una velocidad extraordinaria a través de una línea telefónica convencional. Además se puede mantener una conversación por teléfono mientras se está navegando por Internet.
*BANDA BASE*
En Telecomunicaciones, el término banda base se refiere a la banda de frecuencias producida por un transductor, tal como un micrófono, un manipulador telegráfico u otro dispositivo generador de señales que no es necesario adaptarlo al medio por el que se va a trasmitir.
Banda base es la señal de una sola transmisión en un canal, banda ancha significa que lleva más de una señal y cada una de ellas se transmite en diferentes canales, hasta su número máximo de canal.
En los sistemas de transmisión, la banda base es generalmente utilizada para modular una portadora. Durante el proceso de demodulación se reconstruye la señal banda base original. Por ello, podemos decir que la banda base describe el estado de la señal antes de la modulación y de la multiplexación y después de la demultiplexación y desmodulación.
Las frecuencias de banda base se caracterizan por ser generalmente mucho más bajas que las resultantes cuando éstas se utilizan para modular una portadora o subportadora. Por ejemplo, es señal de banda base la obtenida de la salida de video compuesto de dispositivos como grabadores/reproductores de video y consolas de juego, a diferencia de las señales de televisión que deben ser moduladas para poder transportarlas vía aérea (por señal libre o satélite) o por cable.
Tipos de Transmisión de Datos
Transmisión Análoga
En un sistema analógico de transmisión tenemos a la salida de este una cantidad que varia continuamente.
En la transmisión analógica, la señal que transporta la información es continua, en la señal digital es discreta. La forma más sencilla de transmisión digital es la binaria, en la cual a cada elemento de información se le asigna uno de dos posibles estados.
Para identificar una gran cantidad de información se codifica un número específico de bits, el cual se conoce como caracter. Esta codificación se usa para la información e escrita.
Ej: Teletipo = Servicio para la transmisión de un telegrama.
La mayor de las computadoras en servicio hoy en día utilizan u operan con el sistema binario por lo cual viene más la transmisión binaria, ya sea de terminal a computadora o de computadora a computadora.
Transmisión Digital
En la transmisión digital existen dos notables ventajas lo cual hace que tenga gran aceptación cuando se compara con la analógica. Estas son:
· El ruido no se acumula en los repetidores.
· El formato digital se adapta por si mismo de manera ideal a la tecnología de estado sólido, particularmente en los circuitos integrados.
La mayor parte de la información que se transmite en una red portadora es de naturaleza analógica,
Ej: La voz
El vídeo
Al convertir estas señales al formato digital se pueden aprovechar las dos características anteriormente citadas.
Para transmitir información digital(binaria 0 ó 1) por la red telefónica, la señal digital se convierte a una señal analógica compatible con la el equipo de la red y esta función se realiza en el Módem.
Para hacer lo inverso o sea con la señal analógica, se usan dos métodos diferentes de modulación:
La modulación por codificación de pulsos(MCP).
Es ventajoso transmitir datos en forma binaria en vez de convertirlos a analógico. Sin embargo, la transmisión digital está restringida a canales con un ancho de banda mucho mayor que el de la banda de la voz.
Modos de Transmisión de Datos
Según el sentido de la transmisión podemos encontrarnos con tres tipos diferentes:
Simplex:
Este modo de transmisión permite que la información discurra en un solo sentido y de forma permanente, con esta formula es difícil la corrección de errores causados por deficiencias de línea. Como ejemplos de la vida diaria tenemos, la televisión y la radio.
Half Duplex.
En este modo, la transmisión fluye como en el anterior, o sea, en un único sentido de la transmisión de dato, pero no de una manera permanente, pues el sentido puede cambiar. Como ejemplo tenemos los Walkis Talkis.
Full Duplex.
Es el método de comunicación más aconsejable, puesto que en todo momento la comunicación puede ser en dos sentidos posibles y así pueden corregir los errores de manera instantánea y permanente. El ejemplo típico sería el teléfono.
Semidúplex
Se denomina semidúplex a un modo de intercambio de datos entre dos terminales, en la que la transmisión se lleva a cabo de manera alternativa. Esto es, mientras un terminal está transmitiendo el otro solo puede recibir y viceversa.
Este tipo de transmisión ha sido el utilizado durante mucho tiempo por los teletipos y también es utilizado en la comunicación de datos mediante transceptores.
*CONCENTRADORES*
Hay tres tipos de concentradores: pasivos, inteligentes y de conmutación.• Un concentrador pasivo no hace más que actuar como conducto para los datos que van de un ordenador en uno de los radios de la rueda a otro que se encuentra en otro radio. Hay que conocer tres hechos importantes acerca de los concentradores pasivos, pues son los que constituyen la diferencia con los otros dos tipos de concentrador. Primero, los concentradores pasivos comparten todo el ancho de banda de la red internamente. Supongamos que hay ocho ordenadores conectados a un concentrador pasivo lOBaseT de 8 puertos. Si copiamos archivos de un ordenador a otro utilizando 5 Mbps de ancho de banda, los seis ordenadores restantes deben compartir para sus asuntos los 5 Mbps de ancho de banda que quedan libres. Eso es porque cuando un paquete llega desde un ordenador en uno de los radios, el concentrador pasivo lo copia en todos los radios, aunque sólo vaya destinado a un ordenador determinado. En un momento compararemos eso con el comportamiento de un concentrador de conmutación. Segundo, con un concentrador pasivo, la única información que tenemos de lo que está pasando es un LED que indica cuándo está conectado un ordenador a un puerto (el LED es una pequeña luz) y cuándo hay tráfico que proviene o se dirige a ese ordenador (el LED está intermitente). También compararemos eso con el comportamiento de un concentrador inteligente. Tercero, un concentrador pasivo hace que una red Ethernet parezca ser un segmento, limitando las distancias máximas y aumentando las colisiones.• Un concentrador de conmutación, también llamado un conmutador, lee la dirección de destino de cada paquete y lo envía al puerto correcto (en lugar de enviarlo simultáneamente a todos los puertos, excepto en el caso de ciertos paquetes de difusión especiales utilizados por DHCP y algunos otros protocolos). Esta diferencia con los concentradores pasivos proporciona una importante ventaja: dado que cada puerto es una conexión independiente entre los aparatos conectados, en lugar de compartida, cada conexión recibe todo el ancho de banda disponible en ese tipo de red. Por ejemplo, supongamos que en nuestra red de ocho ordenadores del ejemplo del concentrador pasivo ahora usamos un concentrador de conmutación. Cuando empezamos a copiar archivos de un ordenador a otro, el concentrador de conmutación hace que esos dos ordenadores (y el resto de los ordenadores de la red) piensen que están conectados directamente. Si otros dos ordenadores establecen una comunicación mientras se están copiando los archivos, el concentrador de conmutación hace lo mismo para ellos, proporcionándoles una conexión directa virtual. Un concentrador de conmutación proporcionan un mejor rendimiento que el concentrador pasivo: la red va más rápido si normalmente hay pares de ordenadores comunicándose entre sí. Los concentradores de conmutación también son útiles para conectar concentradores pasivos u otros concentradores de conmutación en configuraciones de red más grandes. Para redes pequeñas, no habrá mucha diferencia, si hay alguna, entre usar conmutadores pasivos o de conmutación pero, afortunadamente, hoy día casi todos los concentradores son de conmutación gracias a que se ha reducido el coste de los circuitos necesarios.• Un concentrador inteligente añade funciones que permiten a los administradores de red controlar el tráfico que atraviesa el concentrador y configurar cada puerto independientemente. Generalmente, se utilizan estas funciones a través de un navegador Web conectado a un servidor Web integrado en el concentrador. Es inusual que se necesite un concentrador inteligente en una red pequeña.
*REDES*
Redes de Área Local (LAN)
Son redes de propiedad privada, de hasta unos cuantos kilómetros de extensión. Por ejemplo una oficina o un centro educativo.
Se usan para conectar computadoras personales o estaciones de trabajo, con objeto de compartir recursos e intercambiar información.
Están restringidas en tamaño, lo cual significa que el tiempo de transmisión, en el peor de los casos, se conoce, lo que permite cierto tipo de diseños (deterministas) que de otro modo podrían resultar ineficientes. Además, simplifica la administración de la red.
Suelen emplear tecnología de difusión mediante un cable sencillo al que están conectadas todas las máquinas.
Operan a velocidades entre 10 y 100 Mbps.
Tienen bajo retardo y experimentan pocos errores.
Redes de Área Metropolitana (MAN)
Son una versión mayor de la LAN y utilizan una tecnología muy similar. Actualmente esta clasificación ha caído en desuso, normalmente sólo distinguiremos entre redes LAN y WAN.
Redes de Área Amplia (WAN)
Son redes que se extienden sobre un área geográfica extensa. Contiene una colección de máquinas dedicadas a ejecutar los programas de usuarios (hosts). Estos están conectados por la red que lleva los mensajes de un host a otro. Estas LAN de host acceden a la subred de la WAN por un router. Suelen ser por tanto redes punto a punto.
La subred tiene varios elementos:
- Líneas de comunicación: Mueven bits de una máquina a otra.
- Elementos de conmutación: Máquinas especializadas que conectan dos o más líneas de transmisión. Se suelen llamar encaminadores o routers.
Cada host está después conectado a una LAN en la cual está el encaminador que se encarga de enviar la información por la subred.
Una WAN contiene numerosos cables conectados a un par de encaminadores. Si dos encaminadores que no comparten cable desean comunicarse, han de hacerlo a través de encaminadores intermedios. El paquete se recibe completo en cada uno de los intermedios y se almacena allí hasta que la línea de salida requerida esté libre.
Se pueden establecer WAN en sistemas de satélite o de radio en tierra en los que cada encaminador tiene una antena con la cual poder enviar y recibir la información. Por su naturaleza, las redes de satélite serán de difusión.
*CONCENTRADORES*
Hay tres tipos de concentradores: pasivos, inteligentes y de conmutación.
• Un concentrador pasivo no hace más que actuar como conducto para los datos que van de un ordenador en uno de los radios de la rueda a otro que se encuentra en otro radio. Hay que conocer tres hechos importantes acerca de los concentradores pasivos, pues son los que constituyen la diferencia con los otros dos tipos de concentrador. Primero, los concentradores pasivos comparten todo el ancho de banda de la red internamente. Supongamos que hay ocho ordenadores conectados a un concentrador pasivo lOBaseT de 8 puertos. Si copiamos archivos de un ordenador a otro utilizando 5 Mbps de ancho de banda, los seis ordenadores restantes deben compartir para sus asuntos los 5 Mbps de ancho de banda que quedan libres. Eso es porque cuando un paquete llega desde un ordenador en uno de los radios, el concentrador pasivo lo copia en todos los radios, aunque sólo vaya destinado a un ordenador determinado. En un momento compararemos eso con el comportamiento de un concentrador de conmutación. Segundo, con un concentrador pasivo, la única información que tenemos de lo que está pasando es un LED que indica cuándo está conectado un ordenador a un puerto (el LED es una pequeña luz) y cuándo hay tráfico que proviene o se dirige a ese ordenador (el LED está intermitente). También compararemos eso con el comportamiento de un concentrador inteligente. Tercero, un concentrador pasivo hace que una red Ethernet parezca ser un segmento, limitando las distancias máximas y aumentando las colisiones.• Un concentrador de conmutación, también llamado un conmutador, lee la dirección de destino de cada paquete y lo envía al puerto correcto (en lugar de enviarlo simultáneamente a todos los puertos, excepto en el caso de ciertos paquetes de difusión especiales utilizados por DHCP y algunos otros protocolos). Esta diferencia con los concentradores pasivos proporciona una importante ventaja: dado que cada puerto es una conexión independiente entre los aparatos conectados, en lugar de compartida, cada conexión recibe todo el ancho de banda disponible en ese tipo de red. Por ejemplo, supongamos que en nuestra red de ocho ordenadores del ejemplo del concentrador pasivo ahora usamos un concentrador de conmutación. Cuando empezamos a copiar archivos de un ordenador a otro, el concentrador de conmutación hace que esos dos ordenadores (y el resto de los ordenadores de la red) piensen que están conectados directamente. Si otros dos ordenadores establecen una comunicación mientras se están copiando los archivos, el concentrador de conmutación hace lo mismo para ellos, proporcionándoles una conexión directa virtual. Un concentrador de conmutación proporcionan un mejor rendimiento que el concentrador pasivo: la red va más rápido si normalmente hay pares de ordenadores comunicándose entre sí. Los concentradores de conmutación también son útiles para conectar concentradores pasivos u otros concentradores de conmutación en configuraciones de red más grandes. Para redes pequeñas, no habrá mucha diferencia, si hay alguna, entre usar conmutadores pasivos o de conmutación pero, afortunadamente, hoy día casi todos los concentradores son de conmutación gracias a que se ha reducido el coste de los circuitos necesarios.• Un concentrador inteligente añade funciones que permiten a los administradores de red controlar el tráfico que atraviesa el concentrador y configurar cada puerto independientemente. Generalmente, se utilizan estas funciones a través de un navegador Web conectado a un servidor Web integrado en el concentrador. Es inusual que se necesite un concentrador inteligente en una red pequeña.
EL HUB
Un hub o concentrador es un equipo de redes que permite conectar entre sí otros equipos y retransmite los paquetes que recibe desde cualquiera de ellos a todos los demás. Los hubs han dejado de ser utilizados, debido al gran nivel de colisiones y tráfico de red que propician. Un concentrador funciona repitiendo cada paquete de datos en cada uno de los puertos con los que cuenta, excepto el puerto del que ha recibido el paquete, de forma que todos los puntos tienen acceso a los datos.
El Switch
El Switch (o conmutador) trabaja en las dos primeras capas del modelo OSI, es decir que éste distribuye los datos a cada máquina de destino, mientras que el hub envía todos los datos a todas las máquinas que responden. Concebido para trabajar en redes con una cantidad de máquinas ligeramente más elevado que el hub, éste elimina las eventuales colisiones de paquetes (una colisión aparece cuando una máquina intenta comunicarse con una segunda mientras que otra ya está en comunicación con ésta…, la primera reintentará luego).
3. El Router
El Router permite el uso de varias clases de direcciones IP dentro de una misma red. De este modo permite la creación de sub redes. Es utilizado en instalaciones más grandes, donde es necesaria (especialmente por razones de seguridad y simplicidad) la creación de varias sub redes. Cuando la Internet llega por medio de un cable RJ45, es necesario utilizar un router para conectar una sub red (red local, LAN) a Internet, ya que estas dos conexiones utilizan diferentes clases de dirección IP (sin embargo es posible pero no muy aconsejado utilizar una clase A o B para una red local, estas corresponden a las clases de Internet). El router equivale a un PC gestionando varias conexiones de red (los antiguos routers eran PCs) Los routers son compatibles con NAT, lo que permite utilizarlos para redes más o menos extensas disponiendo de gran cantidad de máquinas y poder crear “correctamente” sub redes. También tienen la función de cortafuegos (firewall) para proteger la instalación.
4. El repetidor
Este dispositivo sólo amplifica la señal de la red y es útil en las redes que se extienden grandes distancias.
TOPOLOGIAS
Red en anillo
Topología de red en la que las estaciones se conectan formando un anillo. Cada estación está conectada a la siguiente y la última está conectada a la primera. Cada estación tiene un receptor y un transmisor que hace la función de repetidor, pasando la señal a la siguiente estación del anillo.
En este tipo de red la comunicación se da por el paso de un token o testigo, que se puede conceptualizar como un cartero que pasa recogiendo y entregando paquetes de información, de esta manera se evita perdida de información debido a colisiones.
Cabe mencionar que si algún nodo de la red se cae (termino informático para decir que esta en mal funcionamiento o no funciona para nada) la comunicación en todo el anillo se pierde.
Red en árbol
Topología de red en la que los nodos están colocados en forma de árbol. Desde una visión topológica, la conexión en árbol es parecida a una serie de redes en estrella interconectadas.
Es una variación de la red en bus, la falla de un nodo no implica interrupción en las comunicaciones. Se comparte el mismo canal de comunicaciones.
Cuenta con un cable principal (backbone) al que hay conectadas redes individuales en bus.
Red en bus
Topología de red en la que todas las estaciones están conectadas a un único canal de comunicaciones por medio de unidades interfaz y derivadores. Las estaciones utilizan este canal para comunicarse con el resto.
La topología de bus tiene todos sus nodos conectados directamente a un enlace y no tiene ninguna otra conexión entre nodos. Físicamente cada host está conectado a un cable común, por lo que se pueden comunicar directamente, aunque la ruptura del cable hace que los hosts queden desconectados.
La topología de bus permite que todos los dispositivos de la red puedan ver todas las señales de todos los demás dispositivos, lo que puede ser ventajoso si desea que todos los dispositivos obtengan esta información. Sin embargo, puede representar una desventaja, ya que es común que se produzcan problemas de tráfico y colisiones, que se pueden paliar segmentando la red en varias partes. Es la topología más común en pequeñas LAN, con hub o switch final en uno de los extremos.
Red en estrella
Red en la cual las estaciones están conectadas directamente al servidor u ordenador y todas las comunicaciones se han de hacer necesariamente a través de él. Todas las estaciones están conectadas por separado a un centro de comunicaciones, concentrador o nodo central, pero no están conectadas entre sí. Esta red crea una mayor facilidad de supervisión y control de información ya que para pasar los mensajes deben pasar por el hub o concentrador, el cual gestiona la redistribución de la información a los demás nodos. La fiabilidad de este tipo de red es que el malfuncionamiento de un ordenador no afecta en nada a la red entera, puesto que cada ordenar se conecta independientemente del hub, el costo del cableado puede llegar a ser muy alto. Su punto débil consta en el hub ya que es el que sostiene la red en uno.
*Cable coaxial*
Cable coaxial RG-59.A: Cubierta protectora de plásticoB: Malla de cobreC: AislanteD: Núcleo de cobre.
El cable coaxial fue creado en la década de los 30, y es un cable utilizado para transportar señales eléctricas de alta frecuencia que posee dos conductores concéntricos, uno central, llamado vivo, encargado de llevar la información, y uno exterior, de aspecto tubular, llamado malla o blindaje, que sirve como referencia de tierra y retorno de las corrientes. Entre ambos se encuentra una capa aislante llamada dieléctrico, de cuyas características dependerá principalmente la calidad del cable. Todo el conjunto suele estar protegido por una cubierta aislante.
El conductor central puede estar constituido por un alambre sólido o por varios hilos retorcidos de cobre; mientras que el exterior puede ser una malla trenzada, una lámina enrollada o un tubo corrugado de cobre o aluminio. En este último caso resultará un cable semirrígido.
Debido a la necesidad de manejar frecuencias cada vez más altas y a la digitalización de las transmisiones, en años recientes se ha sustituido paulatinamente el uso del cable coaxial por el de fibra óptica, en particular para distancias superiores a varios kilómetros, porque el ancho de banda de esta última es muy superior.
*Cable de par trenzado*
El cable de par trenzado es una forma de conexión en la que dos aisladores son entrelazados para tener menores interferencias y aumentar la potencia y la diafonía de los cables adyacentes.
El entrelazado de los cables disminuye la interferencia debido a que el área de bucle entre los cables, la cual determina el acoplamiento eléctrico en la señal, se ve aumentada. En la operación de balanceado de pares, los dos cables suelen llevar señales paralelas y adyacentes (modo diferencial), las cuales son combinadas mediante sustracción en el destino. El ruido de los dos cables se aumenta mutuamente en esta sustracción debido a que ambos cables están expuestos a EMI similares.
La tasa de trenzado, usualmente definida en vueltas por metro, forma parte de las especificaciones de un tipo concreto de cable. Cuanto menor es el número de vueltas, menor es la atenuación de la diafonía. Donde los pares no están trenzados, como en la mayoría de conexiones telefónicas residenciales, un miembro del par puede estar más cercano a la fuente que el otro y, por tanto, expuesto a niveles ligeramente distintos de IEM.
El cable de par trenzado debe emplear conectores RJ45 para unirse a los distintos elementos de hardware que componen la red. Actualmente de los ocho cables sólo cuatro se emplean para la transmisión de los datos. Éstos se conectan a los pines del conector RJ45 de la siguiente forma: 1, 2 (para transmitir), 3 y 6 (para recibir).
La Galga o AWG, es un organismo de normalización sobre el cableado. Por ejemplo se puede encontrar que determinado cable consta de un par de hilos de 22 AWG.
AWG hace referencia al grosor de los hilos. Cuando el grosor de los hilos aumenta el AWG disminuye. El hilo telefónico se utiliza como punto de referencia; tiene un grosor de 22 AWG. Un hilo de grosor 14 AWG es más grueso, y uno de 26 AWG es más delgado.
Fibra óptica*
Un cable de fibra óptica de TOSLINK para audio iluminado desde un extremo.
La fibra óptica es un medio de transmisión empleado habitualmente en redes de datos; un hilo muy fino de material transparente, vidrio o materiales plásticos, por el que se envían pulsos de luz que representan los datos a transmitir. El haz de luz queda completamente confinado y se propaga por el núcleo de la fibra con un ángulo de reflexión por encima del ángulo límite de reflexión total, en función de la ley de Snell. La fuente de luz puede ser láser o un LED.
Las fibras se utilizan ampliamente en telecomunicaciones, ya que permiten enviar gran cantidad de datos a una gran distancia, con velocidades similares a las de radio y/o cable. Son el medio de transmisión por excelencia al ser inmune a las interferencias electromagneticas, también se utilizan para redes locales, en donde se necesite aprovechar las ventajas de la fibra óptica sobre otros medios de transmisión.
Protocolos de redes
Un protocolo de red es como un lenguaje para la comunicación de información. Son las reglas y procedimientos que se utilizan en una red para comunicarse entre los nodos que tienen acceso al sistema de cable. Los protocolos gobiernan dos niveles de comunicaciones:
· Los protocolos de alto nivel: Estos definen la forma en que se comunican las aplicaciones.
· Los protocolos de bajo nivel: Estos definen la forma en que se transmiten las señales por cable.
Como es frecuente en el caso de las computadoras el constante cambio, también los protocolos están en continuo cambio. Actualmente, los protocolos más comúnmente utilizados en las redes son Ethernet, Token Ring y ARCNET. Cada uno de estos está diseñado para cierta clase de topología de red y tienen ciertas características estándar.
EthernetActualmente es el protocolo más sencillo y es de bajo costo. Utiliza la topología de "Bus" lineal.
Token RingEl protocolo de red IBM es el Token ring, el cual se basa en la topología de anillo.
ArnetSe basa en la topología de estrella o estrella distribuida, pero tiene una topología y protocolo propio.
*protocolo HTTP*
Desde 1990, el protocolo HTTP (Protocolo de transferencia de hipertexto) es el protocolo más utilizado en Internet. La versión 0.9 sólo tenía la finalidad de transferir los datos a través de Internet (en particular páginas Web escritas en HTML). La versión 1.0 del protocolo (la más utilizada) permite la transferencia de mensajes con encabezados que describen el contenido de los mensajes mediante la codificación MIME.
El propósito del protocolo HTTP es permitir la transferencia de archivos (principalmente, en formato HTML). entre un navegador (el cliente) y un servidor web (denominado, entre otros, httpd en equipos UNIX) localizado mediante una cadena de caracteres denominada dirección URL.
Comunicación entre el navegador y el servidor
La comunicación entre el navegador y el servidor se lleva a cabo en dos etapas:
El navegador realiza una solicitud HTTP
El servidor procesa la solicitud y después envía una respuesta HTTP
En realidad, la comunicación se realiza en más etapas si se considera el procesamiento de la solicitud en el servidor. Dado que sólo nos ocupamos del protocolo HTTP, no se explicará la parte del procesamiento en el servidor en esta sección del artículo. Si este tema les interesa, puede consultar el articulo sobre el tratamiento de CGI.
*PROTOCOLO IP*
Internet Protocol (en español Protocolo de Internet) o IP es un protocolo no orientado a conexión usado tanto por el origen como por el destino para la comunicación de datos a través de una red de paquetes conmutados.
Los datos en una red basada en IP son enviados en bloques conocidos como paquetes o datagramas (en el protocolo IP estos términos se suelen usar indistintamente). En particular, en IP no se necesita ninguna configuración antes de que un equipo intente enviar paquetes a otro con el que no se había comunicado antes.
IP provee un servicio de datagramas no fiable (también llamado del mejor esfuerzo (best effort), lo hará lo mejor posible pero garantizando poco). IP no provee ningún mecanismo para determinar si un paquete alcanza o no su destino y únicamente proporciona seguridad (mediante checksums o sumas de comprobación) de sus cabeceras y no de los datos transmitidos. Por ejemplo, al no garantizar nada sobre la recepción del paquete, éste podría llegar dañado, en otro orden con respecto a otros paquetes, duplicado o simplemente no llegar. Si se necesita fiabilidad, ésta es proporcionada por los protocolos de la capa de transporte, como TCP.
Si la información a transmitir ("datagramas") supera el tamaño máximo "negociado" (MTU) en el tramo de red por el que va a circular podrá ser dividida en paquetes más pequeños, y reensamblada luego cuando sea necesario. Estos fragmentos podrán ir cada uno por un camino diferente dependiendo de como estén de congestionadas las rutas en cada momento.
Las cabeceras IP contienen las direcciones de las máquinas de origen y destino (direcciones IP), direcciones que serán usadas por los conmutadores de paquetes (switches) y los enrutadores (routers) para decidir el tramo de red por el que reenviarán los paquetes.
El IP es el elemento común en la Internet de hoy. El actual y más popular protocolo de red es IPv4. IPv6 es el sucesor propuesto de IPv4; poco a poco Internet está agotando las direcciones disponibles por lo que IPv6 utiliza direcciones de fuente y destino de 128 bits (lo cual asigna a cada milímetro cuadrado de la superficie de la Tierra la colosal cifra de 670.000 millones de direcciones IP), muchas más direcciones que las que provee IPv4 con 32 bits. Las versiones de la 0 a la 3 están reservadas o no fueron usadas. La versión 5 fue usada para un protocolo experimental. Otros números han sido asignados, usualmente para protocolos experimentales, pero no han sido muy extendidos.
Internet Protocol (IP)
Familia:
Familia de protocolos de Internet
Función:
Envío de paquetes de datos tanto a nivel local como a través de redes.
Última versión:
IPv6
Ubicación en la pila de protocolos
Aplicación
http, ftp, DNS, ...
Transporte
TCP, UDP, ...
Red
IP
Enlace
Ethernet, Token Ring,FDDI, ...
Estándares:
RFC 791 (1981)
RFC 2460 (IPv6, 1998
ARMADO DE CABLE CRUZADO
Para armar un cable de red necesitamos los siguientes materiales y herramientas: cable UTP de 4 pares (la extensión no mayor de 100 mts.), conectores RJ45 de 8 contactos y las tenazas para cable de red.
Suscribirse a:
Entradas (Atom)